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Abstract. In sea-ice-covered areas, the sea ice floe size distribution (FSD) plays an important role in many processes affecting

the coupled sea-ice-ocean-atmosphere system. Observations of the FSD are spare — traditionally taken via a pain-staking

analysis of ice surface photography — and the seasonal and inter-annual evolution of floe size regionally and globally is largely

unknown. Frequently, measured FSDs are assessed using a single number, the scaling exponent of the closest power law fit

to the observed floe size data, although in the absence of adequate datasets there have been limited tests of this “power-law5

hypothesis". Here we derive and explain a mathematical technique for deriving statistics of the sea ice FSD from polar-orbiting

altimeters, satellites with sub-daily return times to polar regions with high along-track resolutions. Applied to the CryoSat-2

radio altimetric record, covering the period from 2010-2018, and incorporating 11 million individual floe samples, we produce

the first climatology and seasonal cycle of sea ice floe size statistics. We then perform the first pan-Arctic test of the power

law hypothesis, finding limited support in the range of floe sizes typically analyzed in photographic observational studies.10

We compare the seasonal variability in observed floe size to fully coupled climate model simulations including a prognostic

floe size and thickness distribution and coupled wave model, finding good agreement in regions where modeled ocean surface

waves cause sea ice fracture.

1 Introduction

Earth’s polar oceans are covered in sea ice: a thin, heterogeneous interface that plays an important role in the coupling between15

ocean and atmosphere. Sea ice is a collection of many individual pieces, called floes, which may be characterized in terms of

a horizontal length scale, their “size". On the large scales relevant to global climate modeling, the statistical variability of floe

size is described using the floe size distribution (FSD, Rothrock and Thorndike, 1984b).
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The FSD is an important property of the sea ice cover that influences the multiscale temporal and geographic variability of sea

ice, akin to the grain size in sedimentology or particle size distribution in atmospheric chemistry. The scale of individual floes

plays a role in many sea-ice-related processes: sea ice melt rate (Steele, 1992; Horvat and Tziperman, 2017, 2018), the evolution

of the oceanic mixed layer (Manucharyan and Thompson, 2017), atmospheric boundary layer exchange (Birnbaum and Lüpkes,

2002; Lüpkes and Birnbaum, 2005; Tsamados et al., 2014), the sea ice response to applied stress (Feltham, 2008; Wilchinsky5

and Feltham, 2011), and the propagation of waves into the ice (Squire et al., 1995; Squire, 2007; Smith and Thomson, 2016).

The importance of the sea ice FSD has led to the development of diagnostic FSD models of varying complexity (Williams

et al., 2013; Zhang et al., 2016; Bateson et al., 2019), and a prognostic floe size and thickness distribution (FSTD) scheme

(Horvat and Tziperman, 2015; Roach et al., 2018a).

Despite the potential relevance of sea ice floe size to polar climate evolution, there remain no climate-scale assessments of10

average floe size or the FSD. The observational record of floe statistics derives from visual imagery localized in space and time

(i.e., Rothrock and Thorndike, 1984b; Toyota et al., 2006; Steer et al., 2008; Toyota et al., 2011) or repeat measurements in the

same region over several months (Hwang et al., 2017; Stern et al., 2018). FSD measurements are obtained by identifying indi-

vidual floes within a 2-dimensional image of the sea-ice surface. Because floe sizes span several orders of magnitude, accurate

representations of the FSD — even in relatively small geographical domains and in perfect lighting and surface conditions —15

require high resolution and high observational coverage. Nearly all measurements of the FSD have been made in accordance

with a “power law" scaling hypothesis commonly used to describe multiscale systems (Mandelbrot and Wheeler, 1983), in

which the resulting FSD is fit to a straight line in logarithmic coordinates, whose slope, α, is reported as an intrinsic property

of the floe mosaic. There is large uncertainty in these scaling coefficients, the range they apply over, and their applicability and

origin (Herman, 2011; Horvat and Tziperman, 2017; Herman et al., 2018; Stern et al., 2018). Improvements in the quality of20

available FSD data are needed before arriving at consensus derived FSD statistics to guide and assess model performance.

Here we describe a method that exploits satellite radar altimetry to construct the FSD and its moments across polar regions

with sub-kilometer spatial resolution, sub-daily temporal resolution, and spanning multiple orders of magnitude in size. Al-

timeters, like the ones carried on the Envisat, ICESat, CryoSat-2, and ICESat-2 satellites, make repeated, frequent passes over

polar oceans, and substantial efforts have been made to process the satellite returns to discriminate between open water, floes,25

and leads. The altimetric returns have found many uses, including reconstructing the sea ice thickness field (Laxon et al., 2013;

Tilling et al., 2016, 2018b) and ocean surface circulation under sea ice (Peacock and Laxon, 2004; Armitage et al., 2018).

Fields inferred from altimetry have led to advances in understanding polar systems: from forecast and climate prediction (Day

et al., 2014) to model validation (Schröder et al., 2018; Allard et al., 2018) to climate change studies (Laxon et al., 2003; Kwok,

2018), and have been evaluated and validated using field campaign data (Skourup et al., 2017; Sandberg Sorensen et al., 2018;30

Tilling et al., 2018b).

We outline the mathematical theory that allows for comparing altimetric datasets and the FSD in Sec. 2. In Sec. 3 we apply

this method to a new dataset of segmented CryoSat-2 sea ice type data from 2010-2018. Using this data we produce the first

climatological maps of mean sea ice floe size and fragmentation for the Arctic Ocean. We then test the power law hypothesis,

finding limited support for power-law scaling across most of the dataset in Sec. 4. In Sec. 5, we examine how altimetric data35
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can be used in model comparison and improvement, comparing the CryoSat-2 FSD data to a climate model simulation with a

prognostic FSTD model. We conclude in Sec. 6.

2 Floe Chords and the Floe Size Distribution

For an individual pass over sea ice by a polar-orbiting satellite altimeter, return waveforms along the satellite orbit track are

assigned a surface type depending on the waveform shape and coincident sea ice concentration (Tilling et al., 2018b). A “floe5

chord" of length D is a continuous series of points identified as sea ice, covering a geographic distance D (Tilling et al., 2018a,

2019). Define a floes size, r, as its “effective radius" — the square root of the floe’s area divided by π (Rothrock and Thorndike,

1984a; Horvat and Tziperman, 2015). Because the satellite path is at an unknown angle with respect to the (also unknown)

floe geometry, any individual floe chord measurement is not a floe size measurement. Converting between suitably processed

altimetric floe chord measurements and floe size statistics is therefore the subject of this section. Details on the processing of10

the CryoSat-2 waveform, used to produce a dataset of floe chords spanning the period 2010-2018, is outlined in Sec. 3 and

Tilling et al. (2019).

For a domain of horizontal area A, and over a period of time ∆T that corresponds to several repeat satellite passes, we bin

the set of recorded floe chords to form a probability distribution S(D), which we term the “floe chord distribution" (FCD),

where S(D)dD is equal to the fraction of floe chords in A over ∆T with length between D and D+ dD, and is normalized15

to one. To collapse all measured chords onto a single independent scalar coordinate (D), we follow the example of turbulence

statistics (Batchelor, 1953) and assume that the floe chord distribution data is homogeneous, isotropic, and stationary within

the region and time data is collected. In the same region, we define the number FSD P (r), where P (r)dr is the fractional

number of floes with a size between r and r+ dr in A, and is also normalized to one. The FSD inherits the assumptions of

homogeneity, isotropy, and stationarity from the FCD. Our objective is to relate the FCD, S(D), or quantities derived from the20

FCD, to the statistics of the FSD, P (r).

Bayes’ theorem relates S(D) and P (r) through conditional probabilities,

F (r;D)S(D) = F̃ (D;r)P (r). (1)

The conditional probabilityF (r;D) relates given chord lengths to the floe size distribution that could generate them:F (r;D)drdD

is the probability that floes with size in the range from r to r+dR were sampled given a set of chord lengths in the range from25

D to D+ dD. The conditional probability F̃ (D;r) relates given floe sizes to the chord length distribution they generate:

F̃ (D;r)drdD is the probability of measuring a floe chord of length from D to D+ dD given that floes in the size range r to

r+ dr are being measured.

This second probability distribution F̃ (D;r) can be derived from first principles under a single assumption: that the chord

length distribution that would be sampled from a set of floes of size r is independent of r (equivalently, the floe shape distribu-30

tion is scale-invariant). Formally, this requirement is,

F̃ (D;r)dD =G(ξ)dξ, (2)
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Figure 1. Relating a floe chord to floe size for a circular floe. A satellite track (dashed black line) passes over a floe of radius r (solid black

line). The track records a series of echoes of length D, which is the length of a chord (red line) identified by its interior angle, θ.

where G(ξ) =G(Dr ) is an unknown function that integrates to 1 over the interval from ξ = 0 to 1. Under this assumption, the

distribution of possible chord lengths measured from floes of size r has the same functional form independent of r. The proba-

bility distribution F (D;r) may be derived by considering the geometric relationship between straight-line satellite passes and

the geometry of the floes they pass over. Individual floe shapes are highly variable: making an assumption about the distribution

of floe shapes may introduce biases in the statistics derived from the FCD. Yet as we prove in Appendix A, the ability to derive5

FSD statistics from the FCD does not depend on the precise form of F̃ (D;r) so long as the homogeneous, isotropic, stationary

and scale-invariance assumptions are retained, and the evaluation of power-law scaling is in fact independent of F̃ (D;r).

To proceed and arrive at a concrete (although not general) realization of these functions, we will assume all floes are perfect

circles. In assessments of the relationship between major and minor axes of individual floes, the “roundness" parameter for a

floe is typically within 15% of one (Rothrock and Thorndike, 1984b; Toyota et al., 2011; Perovich and Jones, 2014; Gherardi10

and Lagomarsino, 2015; Alberello et al., 2019), suggesting that this circular assumption, while simplistic, is broadly appro-

priate. Nevertheless, it will likely be necessary to amend the analysis below in the future to account for more realistic shape

distributions and geometries (e.g., diamonds (Wilchinsky and Feltham, 2006)), or to evaluate the sensitivity of the results that

follow to the assumed shape distribution. Solving for F̃ (D;r) is a geometric problem that relates the possible measured chord

lengths to the underlying floe size, and we solve this explicitly for circular floes here. Similar geometric problems have been15

identified and solved in other fields (e.g., Pons et al., 2006; Nere et al., 2007), and we therefore leave refinement of F̃ (D;r) to

future work.

Consider the special case that all floes are perfect circles, illustrated in Fig. 1. Because there is no correlation between the

statistics of local sea ice deformation and pre-determined satellite tracks, an individual recorded floe chord,D, originating from

a floe of radius r, was obtained from a satellite trajectory that crosses the floe at a random interior angle θ, thus the distribution20
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of θ ∈ [0,π) is uniform, T (θ;r) = π−1. The length D is thus a chord of this circular floe, with D = 2r sin(θ/2). Accordingly,

F̃ (D;r) = T (θ;r)
∂θ

∂D
=





2
π

1√
(2r)2−D2

r < D/2,

0 otherwise,
(3)

which is a probability function that meets the above criterion (2).

The nth moment of the floe chord distribution S(D), is defined,

〈Dn〉 ≡
∞∫

0

DnS(D)dD =

∞∫

0

drP (r)

∞∫

0

DnF̃ (D;r)dD. (4)5

For any function F̃ (D;r) satisfying the scale-invariance above, the right-hand-side may be expressed in terms of moments of

P (r) (see Appendix A). For circular floes, using Eq. 3,

〈Dn〉=

∞∫

0

drP (r)

2r∫

0

2
π

Dn

√
(2r)2−D2

dD =

∞∫

0

drP (r)
2n+1

π
rn

π
2∫

0

sin(x)ndx=An〈rn〉, (5)

where D
r ≡ ξ = 2sin(x), 〈rn〉 is the nth moment of P (r) and the coefficient An is,

An ≡
1∫

0

ξnG(ξ)dξ =
2n+1

π

π
2∫

0

sin(x)ndx=
2n

π
β

(
n+ 1

2
,
1
2

)
.10

For n= 0, 1, 2, or 3, thenAn is 1, 4
π , 2, or 32

3π . Two important FSD-derived quantities are derived from ratios of FSD moments,

and therefore can be obtained from the FCD directly: the “representative radius" (Horvat and Tziperman, 2017; Roach et al.,

2018a),

r ≡

∞∫
0

r3P (r)dr

∞∫
0

r2P (r)dr
=
〈r3〉
〈r2〉 =

3π
16
〈D3〉
〈D2〉 . (6)

and the floe perimeter per ice area, a measure of sea ice fragmentation,15

P ≡

∞∫
0

rP (r)dr

∞∫
0

r2P (r)dr
=
π

2
〈D1〉
〈D2〉 . (7)

These derived quantities are useful because they require no further information about the sea ice (such as its concentration)

to compare against modeled FSDs. However, both r and P can represent only those floes whose size is larger than rmin =

Dmin/2, the smallest possible floe size sampled. Because of the finite sampling resolution of the altimeter, chords that would

originate from floes with a diameter near the sampling resolution may not be observed, and thus 〈Dn〉 ≤An〈rn〉. We explore20

this uncertainty in Appendix B. For a known floe size distribution, the error decreases exponentially as a function of the
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distributional moment being considered, though it can be large (20% or more) in pathological cases. For distributional tails

characterized by observed scaling exponents (Stern et al., 2018), and for moments considered here, this uncertainty can be

determined systematically and vanishes for measurement spacings smaller than the radius of the most common floe size. This

resolution error does not affect the analysis of the the power-law hypothesis, as that analysis is focused on the distributional

tail.5

2.1 Evaluating the Floe Size Power-law Hypothesis with Floe Chord Data

Suppose the FSD P (r) has a power-law tail that begins at some specified value r1. Then for r > r1, P (r)≡ P (r;α,C) =

Cr−α, for an unknown coefficient C and power-law slope α. Integrating Eq. 1 over all r,

S(D) =

∞∫

0

F̃ (D;r)P (r)dr, (8)

where we leverage that because it is a probability distribution,
∫
F (r;D)dr = 1. Under the assumption of Eq. 2, if P is a power10

law, so is S(D) (Appendix A). For circular floes,

S(D) =
2C
π

∞∫

r1

r−α√
(2r)2−D2

dr. (9)

Because of the sampling resolution of the altimeter there is a minimum resolved chord scale Dmin. If Dmin�D∗ ≡ 2 · r1,

there is an explicit solution for S(D), a power-law distribution over the range (D∗,∞)

S(D) = C ·B
(

1
2
,
α

2

)
2α−1

π
D−α ≡ CαD−α. (10)15

where B is the beta function. The coefficient Cα is a multiplicative factor independent of size, and the power-law exponent for

a FCD is the same as the exponent for FSD, where the two are related by Eq. 1.

Moments of a power-law tail can be evaluated explicitly,

〈rn〉= C

∞∫

r1

rn−αdr = C
rn+1−α
1

n+ 1−α. (11)

Then for both the FCD and FSD, the ratio of any two moments is independent of the unknown coefficient C, i.e.,20

Rn,ε ≡
〈Dn〉
〈Dn−ε〉 ≈D

ε
min

n−α
n+ 1− ε−α, (12)

valid for n+ 1< α. The power-law coefficient can be obtained for any n, ε as,

αn,ε = n+ ε
Rn

Rn−Dε
min

= constant. (13)

In the analysis below we will arbitrarily select only n= 0.5, ε= 1 for comparison (for scaling coefficients α > 1.5, the bulk of

reported power-law coefficients are in this range: Stern et al., 2018). Because the observations will not be perfect power-law25

6
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Figure 2. Constructing a FCD from altimetry. (a) Base 10 logarithm of the number of floe chords identified, binned into the CESM grid,

across all CryoSat returns in the Arctic from 2010-2018. Black line is a single satellite track on January 21, 2014. (b) Subsection of the track

centered on the blue dot in (a). Blue line is freeboard of sea ice in radar echoes defined as “floes" along the track. Black lines are chords

identified from the freeboard retrieval. (c) Total number of chords measured in each month in the Arctic. Plot is centered on January 1. (d)

FCD for the satellite track depicted in (a). Black marks on x-axis are the logarithmically spaced chord length bins.

distributions, we will use α0.5,1 ≡ α∗ as an estimator. A second estimate of the power-law scaling coefficient, α̂, is com-

puted via the maximum likelihood estimator (Muniruzzaman, 1957; Clauset et al., 2009; Virkar and Clauset, 2014) (details in

Appendix C) as,

α̂= 1 +
N

N∑
i=1

ln Di
Dmin

. (14)

where N is the number of chords. If the condition that n+ 1< α is met, then the agreement of these two estimates of α is5

a necessary, though not sufficient condition for the power-law hypothesis to hold for a well-sampled distribution. We provide

code and a comparison tool in the Supporting Information (Text S1 and File S1) to examine the accuracy of these estimates,

showing they are accurate and in agreement even for small (N < 25) sets of power-law distributed data. We caution again

that the easier-to-apply Eq 13 is applicable only when αn,ε > n+ 1. The method of Clauset et al. (2009) is preferred because

it permits goodness-of-fit tests for the power law distribution, estimates of the beginning of the range or applicability of the10

power law, Dmin, and a method for evaluating the statistical likelihood of a power law decay for any n, which we exploit in

Section 4.
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3 Climatology and Trends in Floe Properties Derived from CryoSat-2 Altimetry

We apply the analytic technique described in Sec. 2 to a floe chord data set constructed from the CryoSat-2 radar altimeter

processed by the Center for Polar Observation and Modelling (CPOM) over the period from October 2010-present (CPOM data

products are available at http://www.cpom.ucl.ac.uk/csopr/seaice.html). CryoSat-2 radar echo returns are defined as “lead”,

“floe”, “open ocean” or “ambiguous” at an approximately constant along-track spacing Dmin =300 m according to waveform5

shape and sea ice concentration (Tilling et al., 2016, 2018b). Floe chords are defined as a continuous sequence of two or more

“floe" echos, with a gap of at most one echo permitted in sequence, and single isolated floe returns eliminated, to account for

anomalous returns. Individual chord lengths may be underestimated in cases where continuous floes are separated by producing

two or more ambiguous echoes in sequence. A chord length is taken from the midpoint of the first to the midpoint of the last

radar echo. Floe chord lengths are not measurements of floe size, and do not resolve regions of small floes, as the minimum10

chord length retrieval Dmin is limited to the CryoSat-2 footprint (∼300 meters along-track) (see the discussion in Appendix

B). However, surface discrimination via altimetry is highly accurate in months without melt ponds (Peacock and Laxon, 2004;

Guerreiro et al., 2017; Quartly et al., 2019), giving confidence that two consecutive floe echos, the minimum length scale

represented here, represent a coherent length of ice. Indeed, this raw floe chord data has been used successfully to reduce

biases in altimeter-observed satellite sea ice thickness estimates from satellite altimeters with different footprint sizes (Tilling15

et al., 2018a, 2019). Here we analyze the sea ice floe size distribution using that floe chord product.

Figure 2 shows an example of floe chord data for a single CryoSat-2 track over the Arctic on January 14, 2018. Freeboard

values for echoes discriminated as “floe" are plotted in Fig. 2b as a function of the along-track distance in km, and correspond

to the red circle in Fig. 2a. Floe chords are identified as black segments in Fig. 2b. The histogram of all 741 identified chords

for this single satellite pass is shown in log-log space in Fig. 2d.20

The full CryoSat-2 dataset examined here spans the time period from October 2010 to November 2018, and floe chords

measured using the above technique are binned into the CICE sea ice model’s two-dimensional sea ice grid for each month and

year to facilitate comparison with model products. For every grid cell i, month m, and year y, we have a vector of floe chords

{Di,m,y} from which we build a FCD. The base 10 logarithm of the total number of floe chords recorded in each grid cell per

month is shown in Fig. 2a. Because the satellite passes are densest near the pole, the measurement density is highest near the25

pole as well. Fig. 2c shows the number of Arctic measurements in each month. Sea ice type from CryoSat-2 is not available

during summer months, as melt ponds make it difficult to discriminate between leads and ponded floe surfaces, and we do not

include measurements from May to September. Across the entire set of satellite tracks included here, 11 million chord lengths

are recorded in the Arctic.

Figure 3a shows the seasonal cycle of Arctic representative radius over the CryoSat-2 period obtained by applying Eq. 6 to30

the binned CryoSat-2 floe chord product. Individual years are plotted as thin lines, and the climatological average is shown

in red. Details on how temporal and spatial average statistics are computed is included in Appendix D. During the months

of October-December, the climatological representative radius is roughly 35% larger (7.06 km vs 5.18 km) than February-

April. This seasonal cycle is broadly consistent across years. Fig. 3b shows annual-average representative radius in red for

8
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Figure 3. Top row: Temporal and geographic variability of Arctic representative radius. (a) Climatology of Arctic-average representative ra-

dius in units of km (red line). Thin lines are individual CryoSat-2 years. (b) Annual-average Arctic representative radius (red line). Thin lines

are average in individual months. (c) Climatological representative radius in months October-December. (d) Same as (c) but for February-

April.

each full year from 2011-2017, with thin lines corresponding to the individual months within that year. Seasonal variability is

significantly larger than inter-annual variability. There is no statistically significant linear trend at the p=0.05 level.

The geographic variability of representative radius over the “early winter" (October-December) and “late winter" (February-

April) periods are shown in Fig. 3c-d, for all grid areas with at least 25 recorded floe lengths in each month within the averaging

period. The 25 measurement threshold was chosen as the mean statistics presented here were insensitive to smaller or larger5

thresholds where a majority of chords are included (see Supporting Information Text S2 and Fig S1). The largest representative

radii in the Arctic lie along the Canadian archipelago, with a tongue of large floes that extends along the American Arctic in

late winter. The smallest representative radii (below 1 km) lie in Bering Strait and the Russian Arctic in early winter, and in the

Laptev Sea in late winter. The difference in representative radius from fall and spring is accounted for by the reduction of floe

sizes in regions near the Arctic interior (see Fig. 6).10
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Figure 4. Examining the power-law hypothesis. (a) Histogram of all chord lengths recorded in the Arctic for the months November-April

(black). Bin edges are shown as hashes on the x-axis and are logarithmically spaced. Blue line is power-law fit to all observed sizes according

to eq. 11, with shading the difference between blue line and black line. Red line is power-law fit to the tail, with red shading the difference

between red line and black line. Red vertical line is the most likely beginning of the power law tail,D∗. (b) Same as (a), but for measurements

in April. (c) Maximum likelihood estimate of the beginning of the power law tail,D∗ (in km) for all measurements at each geographic location

over the observational period. Only locations withN > 1000 are plotted. (d) Maximum likelihood estimate of power law tail exponent, α̂tail,

for the same points. Colored values have more than 200 chord lengths in the tail and p > 0.1. Zero values are those locations plotted in (c) but

where either p < 0.1 or there are less than 200 measurements in the tail. (e) Number of chord lengths in the tail (above D∗) at each location.

4 Evaluating the Power-law Hypothesis Using Floe Size Statistics Derived from CryoSat-2

Given a collection of chord lengths, we would like to examine whether it is distributed according to a power law. Under the

assumptions of Sec. 2, the scaling behavior of the FSD is the same as of the FCD (see Appendix A). We use the statistical

methodology outlined in (Clauset et al., 2007, 2009; Virkar and Clauset, 2014) (which we term the MLE method) to evaluate

shape parameters of the most likely power law fit and to test its plausibility as follows:5

1. Lower-truncate the FCD. First identify a minimum chord scale, D∗, above which we hypothesize a power law tail, and

analyze only those floe chord measurements. We either (a) choose D∗ as the peak of the FCD (generally equal to Dmin)

or (b) use the scheme described in Clauset et al. (2007) to evaluate the most likely value of D∗ for a power law tail. The

length of this lower-truncated distribution is N . In the descriptions that follow, we use the subscript all to describe case

(a) and tail to describe case (b).10
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2. Compute power-law scaling estimates and parameter uncertainty. We obtain two estimates of the FCD scaling

estimate: either computing α∗ via Eq. 13, or computing α̂, and uncertainty estimates in both α̂ and D∗ via the MLE

method (Eq. 14). That the two estimates of α agree is a necessary condition for the FCD (and thus FSD) to be power-law

distributed.

3. Examine the plausibility of the power law fit. We generate M FCDs of size N (the same number of synthetic chords5

as observed chords), with each synthetic FCD drawn from the hypothesized power law distribution P (α̂,D∗). For each

of these synthetic FCDs, we compute the Kolmogorov-Smirnov distance between it and the hypothesized power law

model that generated it, P (α̂,D∗). We also compute the distance between the observed FCD and P (α̂,D∗). A p-value,

p, is equal to the fraction of those M synthetic FCDs that are “further away" from the hypothesized power law model

than is the observed FCD. We use M = 10,000, which permits computation of p within 0.005 (Clauset et al., 2009), and10

rule out the power law fit using the conservative condition p < 0.1 of Virkar and Clauset (2014), i.e. we can rule out the

power law hypothesis when a random sampling from the hypothesized power-law distribution is closer to that power-law

distribution than the observations more than 90% of the time.

The MLE method is a rigorous test of the power-law hypothesis that eliminates potential human bias when interpreting

observational data. To illustrate why this is important, we first consider the entire set of 11 million chord lengths recorded in15

the Arctic in all months (October-April), spanning 3 orders of magnitude from 300 m to 100 km. The histogram of these floe

chords is the black line in Fig. 4a (hashes on the x-axis show the logarithmically spaced bin centers). With the most commonly

recorded floe sizeD∗ =Dmin = 300m, α̂all = 1.56 (blue line) and α∗all = 1.70 (not shown). The observations are further away

from synthetic data drawn from P (α̂all,D∗) in each of the M = 1,000 random draws (pall = 0/1000) and we reject the power

law hypothesis for these measurements. We note that if the resolution bias explored in Appendix B proves to be larger than20

expected, the under-representation of small floe lengths may affect the analysis of the full distribution.

Examining the tail of the distribution in Fig. 4a, the maximum likelihood estimate of D∗ is ≈ 15.0 km (red vertical line,

vertical shaded region is the range of uncertainty for D∗), above which there are∼40,000 chord length measurements between

24.7 km and 99 km (0.4% of the dataset). On the truncated FCD, α̂tail = 4.56 (red line, dashed lines are uncertainty ranges

for α̂tail), and α∗tail = 4.66 (not shown), similar to the large-scale roll-off reported in observations Toyota et al. (2016). Even25

when restricted to the FCD tail, ptail = 0/1000.

Finding no statistical basis for a power-law fit to the tail in Fig. 4a underscores the challenge in using the human eye to

observe power law scaling. While the black and red lines in Fig. 4a appear similar across much of the range of sizes above

24.7 km, by examining the misfit between the power law estimates and the data (shaded values in Fig. 4a, blue is for the entire

distribution and red is for the tail), the two curves in fact differ significantly across the entire fit range. A misfit error can be30

defined as,

E =
〈 |P (xi, α̂tail,D∗)−P (xi)|

P (xi, α̂tail,D∗)

〉
(15)
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Figure 5. Top row: Temporal variability of power law fits to Arctic FCDs. (a) Estimate of the most likely power-law scaling coefficient for

all recorded floe chords as a function of month over all years, calculated from the MLE method Eq. 14 (red lines) or Eq. 13 (blue lines).

Thick lines are climatological averages, thin lines are individual years. Plot is centered on January 1. (b) Like (a), but plotted for individual

years over all months. Thick lines are average over months plotted in (b) and thin lines individual months in each year. (c-d) same as (a-b),

but for the distributional tail starting from D∗ computed using the MLE method. “Arctic" refers to points above 60◦N

where the xi are the bin locations, angle brackets denote an average over the relevant bins, and P (xi) are the observed histogram

values. Over the range from 24.7 km to 100 km, the misfit error is 33%. The visual agreement, misfit error, and apparent slope

and shape of the distribution depend sensitively on the bin spacing and the logarithmic plotting.

Assuming a multiscale power law of floe sizes when the power law hypothesis is invalid may significantly bias sea ice

parameterizations. Imposing a distributional shape in the presence of scale-selective FSD evolution leads to implicit non-5

local redistribution of sea ice among floe size categories (Horvat and Tziperman, 2017). For example, we may compare the

representative radius, r, used in parameterizations of wave-ice interaction and sea ice thermodynamics, between the full Arctic

FCD and its most likely power-law distribution. The representative radius (of floes larger thanDmin) is 10.2 km when applying

Eq. 6 to the observed FCD (black), but 34.5 km applied to the fitting line (blue). In the tail (i.e., for chord lengths above 24.7

km), the representative radius is similar: 24.4 km for the fitting line and 23.7 km for the observations. Yet less than 1% of10

chord lengths are larger than 24.7 km, accounting for 18% of the total ice area, and just 4.5% of the perimeter per square meter

(Eq. 7).

Segmenting the chord length data into individual months in the Arctic, there are none where pall > 0. Examining only the

tail of each month’s distribution, ptail < 0.1 in all months. Only in April is there a non-zero ptail = 0.05, for which the analysis

of Fig. 4a is repeated as Fig. 4b. In April, α̂all = 1.62,, α̂tail = 5.70, and D∗ = 30.7 km. The tail consists of 1618 measured15

chord lengths up to 97.5 km, accounting for 8% of the total floe area and 1.4% of the perimeter per square meter. The misfit

error between the April FCD tail and P (α̂tail,D∗) is 76%. Accumulating all measured chord lengths from October-May into

the CESM model grid, we find zero locations that support a power law distribution across the range of measurements (i.e.,

pall > 0.1). For grid areas with N > 1000, we show the value of D∗ computed using the local FCD in Fig. 4c. Values of D∗

range from 2 kilometers along the Russian Arctic to more than 10 km near the Pole.20

While most of the Arctic has at least 1000 total measurements across all years, FCD tails (D >D∗) are not as well-sampled.

We investigate these tails including regions with at least 200 measured floe chords larger thanD∗. The percentage of geographic
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areas with at least 1000 total measurements that have a tail with at least 200 measurements is 44%; on average D∗ is 5.4 km

for these regions. For most of these regions we can not rule out a power-law tail. For the subset of regions with 1000 total

measurements, 200 measurements in the tail, and where the power law hypothesis cannot be ruled out, the average D∗ is 6.5

km and average α̂tail is 3.34, within the typical range of Arctic FSD measurements (Stern et al., 2018). In fig. 4d we show

the values of α̂tail at these locations, with colored cells those where p > 0.1 and the tail has at least 200 measurements. In5

Fig. 4e we show the base 10 logarithm of the MLE tail for all geographic locations. Those regions for which a power law

cannot be ruled out are generally those with the largest floes and the highest sampling, clustered near the central Arctic. The

weakest support for a power-law tail is in the Chukchi and Beaufort seas, where power-law floe size distributions have often

been reported. We note that our choice of tail length plays an important role in whether the power-law hypothesis is rejected

in the tail across the Arctic. For example, the fraction of Arctic regions with at least 1000 total measurements, a tail of at least10

100, 200, and 400 measurements, and that does not reject the power-law hypothesis is 72%, 52%, and 15%, respectively. The

better-sampled the FCD/FSD, the more likely the power-law hypothesis is rejected.

Scaling coefficients can provide useful information about the distributional shape. In Fig. 5(a-d) we show the seasonal and

inter-annual variability of power-law estimates in the Arctic. Figure 5a plots the climatology of the power law scaling estimates

when including all measured chord lengths in dark red (using Eq. 13) or blue (using 14). Individual years are thin red or blue15

lines. The two estimates consistently disagree, which as discussed previously is sufficient to rule out the power-law hypothesis.

There is no trend or seasonal cycle in the power-law fitting for the full distribution. Fig. 5(c-d) repeats this analysis on the

tail of those monthly distributions. In this case, the two estimates agree well. There is a seasonal cycle in the steepness of the

distributional tail: shallowest in early winter and steeper in late winter, inverse to the trend in representative radius exhibited in

Fig. 3a. This indicates that the changes across the winter months may be due to a reduction of the largest floes and a steepening20

of the distributional tail. There is no significant linear trend at the p=0.05 level in FSD tail slope (Fig. 5d).

5 An Example Model-observation Comparison of Floe Size Variability

With the gridded data provided above, we may now directly compare development-stage sea ice models that incorporate FSD

effects to observations. To do so, we use the Roach et al. (2018a) prognostic model for the FSD/FSTD, based on the Horvat

and Tziperman (2015) theoretical FSTD framework, implemented into CICE 5.1.2 (Hunke et al., 2015) sea ice model. The25

FSTD is a sea ice state variable, subject to interaction of five key physical processes: lateral growth, lateral melt, fracture by

ocean surface waves, welding of floes in freezing conditions and wave-dependent new ice growth (Horvat and Tziperman,

2015, 2017; Roach et al., 2018a, b). Previously published model runs (Roach et al., 2018a) investigated the impact of the FSD

on lateral melt, particularly important for floe sizes below 300 m (Steele, 1992), necessitating a maximum floe size of 1 km.

As a larger range of scales is resolve in the CryoSat-2 observational product, we conducted a model run that extended the floe30

size categories to scales larger than 1 km, using 24 logarithmically-spaced floe size categories from 0.5 m to 33 km.

This FSTD model simulation is coupled to a slab ocean model and the WAVEWATCH III ocean surface wave model (Tolman,

2009), forced by the JRA55 atmospheric reanalysis (Kobayashi et al., 2015) from the pre-industrial period to 2016. Additional
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Figure 6. Geographic and climatological comparison of modeled and observed representative radii. (a-b) Average representative radius from

November-December in (a) the CryoSat-2 observational dataset and (b) the FSTD model. Grey shaded regions in (b) are the interior of

contours in (a), which represent “pack ice" unaffected by waves in the model simulations. (c) Climatology of Arctic-average representative

radius in units of km for the MIZ in observations (red) and modeled (blue). Green line is the annual average for the “pack", the excluded

regions in (b). Thin lines are averages in individual years from 2011-2016 in the MIZ. (d-e) same as (a-b), but for the months of February-

April. (f) Annual-average Arctic representative radius for wave-affected regions in MIZ observations (red), MIZ model (blue), and pack ice

observations. Thin lines are average in individual months in the MIZ observations.
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model physics beyond those processes outlined in Roach et al. (2018a), have been added to determine the initial size of newly

formed sea ice floes as a function of the ocean surface wave field. Details on this new parameterization, model initialization, and

spin-up, are described in Roach et al. (2019). Recalling the finite measurement resolution of the CryoSat-2 dataset, modeled

representative radius is calculated including only floe size categories from 300 m and larger.

Fig. 6(a-b,d-e) compares modeled and observed climatologies of Arctic representative radius (for floes larger than 3005

m) averaged over 2011-2016 and the months of October-December (a,b) and February-May (c,d). Geographic variability

of representative radius is broadly similar between model and observation: the largest floes lie in the Arctic interior and

Canadian Archipelago, with regions of smaller floes in the Straits and continental margins. Across the interior Arctic, simulated

representative radii are significantly larger than are found in the observations, as the Roach et al. (2018a) FSTD model does not

include processes that break up large floes in the absence of ocean surface waves. To compare seasonality between model and10

observations, we compare only those regions that experience wave fracture in the model runs, areas we collectively term the

marginal ice zone (MIZ). The MIZ is defined by excluding categories that do not experience wave fracture in a given month

(see Appendix D), shown as the contoured regions in Fig. 6(a-b,d-f) and greyed out in Fig. 6(b,e)). All excluded “pack ice"

regions have modeled representative radii greater than 18 km. The MIZ region accounts for 37% of grid areas with at least 25

chord measurements in months from October-December and 35% of such areas for the period February-March. Note that the15

month of October is absent from these plots, because no well-sampled regions are classified as MIZ across all model years

according to the criteria outlined in Appendix D.

Fig. 6(c) compares the observed (red) and modeled (blue) Arctic-average representative radii for the MIZ across over the

period 2011-2016 as in Fig. 3(a). The seasonal cycle of representative radius in the MIZ is different in the observations (red

line, thin orange lines are individual months) than when all geographic regions are included (Fig. 3a). The seasonal cycle20

of representative radius in the “pack ice" region (i.e. not the MIZ) is shown as a green line in Fig. 6c. In the MIZ, average

representative radii are smaller (on average 4.17 km vs vs. 6.49 km in the pack ice region). In contrast to the seasonal variation

across all geographic regions (Fig. 3a) as well as in the pack ice, floes are larger in February-April than in November-December

(5.40 km vs 3.15 km). In both the MIZ and pack ice regions, however, average representative radius is similar in late winter.

The largest difference between the two regions is from November-December, where representative radii are more than twice25

as large in the pack ice than the MIZ.

Fig. 6(f) shows the annual average representative radius in the MIZ (red), pack ice (green) and modeled MIZ regions (blue).

Modeled MIZ representative radii have a similar magnitude compared to the MIZ observations, though these regions have

smaller floes than the interior. To address the scale mismatch between the too-high modeled floe sizes and observed represen-

tative radii in the interior Arctic, as well as the strong and different seasonal cycle in representative radius in both regions,30

modeling efforts must include additional mechanisms for reducing floe size in the Arctic interior away from waves, such as

mechanical fragmentation (Toyota et al., 2006; Rynders et al., 2016) or ridge dynamics (Roberts et al., 2019), to obtain realistic

representative radii across the entire Arctic, as these processes are not present in the model used to make this comparison.
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6 Conclusions

Here we developed and demonstrated a method for deriving the statistics of the sea ice FSD from satellite radar altimeter

measurements of chord length. This method provides the first global, high-resolution accounting of climate-relevant quantities

derived from the FSD, permits testing of existing scaling laws previously used to characterize distributions of floe size, and

allows for gridded comparisons between FSD models and observations. Using this new technique we produced climatological,5

annual-average, and geographic mean moments of the Arctic FSD across 3 orders of magnitude of floe size. With the combina-

tion of satellite altimetry and mathematical theory, we were able to rigorously examine the “power-law hypothesis" related to

the FSD under simple assumptions about the underlying floe chord data and the fidelity of CryoSat-2 satellite retrievals. Seg-

menting measurements by geographic location, by month, and by year, we find limited statistical basis for a power-law scaling

beginning below about 6.5 kilometers. In a limited number of geographic locations, we find the observational data cannot rule10

out power-law scaling, but for typical sizes above about 6.5 kilometers. Assuming a power-law floe size distribution can bias

sea ice model output and conceptual understanding. The geographic variability and lack of consistent multi-scale behavior

reinforces the need for sea ice models to account for floe-scale processes rather than diagnose a distributional shape.

Observations that span the polar regions and different years and seasons are valuable for future refinement of process-based

models of the FSD. In Sec. 5, we demonstrated how such model-observation comparisons can be made and can provide useful15

insights for model developers. At present, some general features of floe size evolution (in particular the magnitude and seasonal

cycle of the representative radius) are broadly similar between model and observation in the marginal ice zone. Yet there is

a significant scale mismatch in the interior Arctic between a simulation and this observational product, because of missing

fragmentation physics in the absence of ocean surface waves. Floe size modeling efforts have focused on the marginal ice

zone, and particularly floe sizes below about 1 km because these small floes play an important role in sea ice thermodynamics20

for floe sizes. The CryoSat-2 observations, however, are best suited to resolving floe chords of 300 m and above. New satellite

altimeters like ICESat-2 have the potential to increase the chord length resolution to scales of 20-100 m and provide insight at

smaller scales.

We emphasize strongly that refinement may be necessary to apply this method for operational purposes, trend analysis, and

further model validation. We have tried to outline the most significant uncertainties in the application of this method. The25

typical assumptions of homogeneity, isotropy, and stationarity are invoked here at the length scale of the CICE model grid

and time scale of one month. These statistical assumptions may not be satisfied if, for example, the number of measurements

in a given region in one month is insufficient to sample the known anisotropy of the sea ice floe field, and additional passes

change the mean chord length significantly (see Supporting Information Text S2 and Fig S1). The assumption of scale-invariant

sampling, and structural uncertainty that arises because of finite sampling resolution, may also affect the inferred size of sea30

ice floes. While processed CryoSat-2 product has been validated against both visual imagery and ground-based observations, it

was not designed with this application in mind — additional quality control may be necessary for climate studies of changing

floe properties. The assumption that chord length measurements are accurate at the scale of the satellite footprint, which affects

the assessment of a multi-scale power law, will need to be examined by comparing these results to other altimeters. The positive

16

https://doi.org/10.5194/tc-2019-134
Preprint. Discussion started: 17 June 2019
c© Author(s) 2019. CC BY 4.0 License.



findings of Section 5 could also be due to a compensation between these measurement uncertainties. A future comparison of

results from the the Ice-Sat2 and CryoSat-2 altimeters will provide insights into the relevance of measurement and statistical

uncertainties, as will comparison of altimetrically derived floe chords measurements with visual imagery.

Even accounting for important caveats that arise from making satellite measurements, remotely sensing the sea ice FSD from

altimeters at sub-daily resolutions can provide a significant increase in data for comparison and analysis of new sea ice models5

that parameterize the FSD. Previously the difficulty of making measurements of the FSD at relevant spatial and temporal scales

has inhibited the wide-spread adoption of such floe-sensitive sea ice models. Understanding sea ice variability at the floe scale

is also an important aspect of sea ice forceasting, and the ability to remotely assess the sea ice FSD at near-real-time will allow

for further improvement of operational forecasting networks.

Data availability. CPOM sea ice data, including raw floe length data, are available on the CPOM data portal at http://www.cpom.ucl.ac.uk/csopr/seaice.html.10

The processed FCD/FSD statistics are available at https://github.com/chhorvat/CRYOSAT-FLOES/. The Roach et al. (2018a) FSTD model

is publicly developed and available at https://github.com/lettie-roach/.

Appendix A: Proof that the FCD and FSD have the same statistical properties

For generic probability distributions S(D) and P (r), and a probability function F̃ (D;r), via equation 4 we have the relation-

ship,15

〈Dn〉=

∞∫

0

drP (r)

r∫

0

DnF̃ (D;r)dD. (A1)

Where we restrict the upper bounds on the second integral because F̃ (D;r) is zero for D > r. Under the scale-invariant

sampling assumption F̃ (D;r)dD =G(ξ)dξ, where ξ = D
r for D < r (ξ < 1). Therefore,

〈Dn〉=

∞∫

0

drP (r)

1∫

0

rnξnG(ξ)dξ (A2)

=

∞∫

0

drP (r)rn
1∫

0

ξnG(ξ)dξ (A3)20

=An · 〈rn〉, (A4)

where An is the nth moment of G(ξ), a constant that depends on the functional form of G. For any such probability function

(for example that derived in Sec. 2 for circular floes), the moments of the FSD and the moments of the FCD are proportional.

Most of the hypothetical statistical distributions we would consider (for example, power laws) can be fully determined in terms

of their moments, and thus the relationship between moments of the FSD and FCD is typically sufficient to reconstruct the25

underlying FSD.
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Supposing P (r) was a power-law function, converting Eq. 8 to an integral over ξ from 0 to 1, we have,

S(D) =

∞∫

0

F̃ (D;r)P (r)dr =

1∫

0

P (D/ξ)G(ξ)
ξ

dξ. (A5)

For a power-law function, P (D/ξ)∝
(
D
ξ

)−α
and

S(D)∝ ·D−α
1∫

0

ξα−1G(ξ)dξ =Aα−1D
−α. (A6)

From Equations A4 and A6, and under the assumptions of Sec. 2, all moments of the FSD and FCD are related by a computable5

function of the moment only, and power-law FSDs are derived from power-law FCDs with the same scaling law. While the

proportionality of moments and Eq. A6 prove that an observed power-law FCD must reflect an underlying power-law FSD, the

same analysis used to arrive at Eq. A6 can be repeated to find P (r) given a power-law distributed S(D) as well.

Appendix B: Bounds on the Relationship between Chord Length and Floe Size Moments

The real altimetric data product has a finite sampling resolution Dmin which can bias the computed FSD moments and power-10

law decay profile. For example, applied to real data with a finite sampling resolution , the integrals in equations 4 to 5 are taken

beginning at the minimum observed chord lengths Dmin and floe sizes rmin =Dmin/2. Moments of the distributions S and

P reflect only statistics for floes larger than Dmin and rmin, respectively. All other aspects of this derivation remain the same,

as F (r;D) is zero for any r < D/2. However, the relationship expressed in Eq. 4 becomes:

〈Dn〉=

∞∫

rmin

drP (r)
2n+1

π
rn

π
2∫

Y (r)

sin(x)ndx (B1)15

=An〈rn〉


1−

∞∫
rmin

drP (r) 2n+1

π rnSn(Y (r))

An〈rn〉


 (B2)

≡An〈rn〉 [1−E(P (r);n)] . (B3)

where Y (r)≡ sin−1(Dmin2r ), Sn(y) =
∫ y
0
sinn(x)dx, and E is the error in relating the nth moments of S(D) and P (r). Since

P (r) is unknown, E cannot be computed a priori. The function Sn(Y (r)) expresses the percentage of chords formed from

floes of size r that would be smaller than Dmin, although it is not readily expressed as a function of n. The most pathological20

distributio is when P (r) is a delta function at rmin, P (r) = δ(r−rmin), Y (rmin) = π/2 and E = 1 as no chord lengths would

be measured.

We can compute the error function for any delta function distribution as,

E(δ(r− r∗);n) =
Sn(Y (r∗))
Sn(π2 )

, (B4)
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and the misfit is the proportion of the integral of sinn(x) betweeen 0 and Y (r∗). Because sin(x) is monotonically increasing

from x= 0 to π/2, the integral of Sn is bounded above:

Sn(Y (r∗))≤ Y (r∗)sinn(Y (r∗)) = Y (r∗)
(
Dmin

2r∗

)n
, (B5)

and the misfit error is bounded above by,

E(δ(r− r∗;n))≤
(
Dmin

2r∗

)n
Y (r∗)

β(n+1
2 , 1

2 )
. (B6)5

The reciprocal of the β function is equal to π at n= 0 and decreases sub-linearly, and so away from rmin the error term decays

exponentially with n and is small even for nearly-pathological distributions (for n=1, r∗ =Dmin, for example, E ≤ π/24≈
14%. Knowing the distribution of errors behaves in this way allows us to establish upper bounds by integrating P as a sum of

δ functions.

We note that increasing resolution of floe chords will result in tighter bounds on this error. When Y (r)∗ ≤ 1, which occurs10

when r∗ ≥ Dmin
2sin(1) ≈ 0.59Dmin, we can exploit a tighter bound using the fact that sinn(x)≤ xn,

Sn(Y (r∗))≤ Y (r∗)n+1

n+ 1
≤ Y (r∗)

(
Dmin

2r∗

)n
. (B7)

Using the same example as above (n= 1, r∗ =Dmin) bounds the error E ≤ π2/144≈ 7%. A real-world distribution of floe

sizes must have a peak value above zero, thus by increasing the sampling resolution (say, for example, to near the size of

pancakes, i.e. Dmin ≈ 20 meters or less, approached by the ICESAT-2 altimeter), this bound takes over and errors are reduced15

substantially.

We can explicitly solve Eq. B3 for distributions with power-law tails. These distributions are peaked at the minimum floe

size, and so will have high moment error. For power laws with α=−1, −2, −3, or −4, E(P (r;α,rmin),1) is 1, 4, 16, or 25

percent. For n= 2,E(P (r;α,rmin),2) is .003, .04, 2, or 9.6 percent: the increase in error with decreasing α is because sharper

power law slopes concentrate most of the distribution towards the smallest scale.20

Appendix C: Maximum Likelihood Estimation for Chord Length Distributions

Given a set of floe chords {D}i and an estimate of the beginning of a power-law tail D∗, we would like to find the most likely

power-law floe size distribution P (r;α,rmin) that generated them. As discussed in Appendix A, moments of the FSD and

FCD are related by a multiplicative factor, and the distributions themselves will share the same power-law exponent. Thus we

may test the power-law hypothesis directly on the FCD S(D). The power-law hypothesis means that S(D) is of the form,25

S(D) =
(α− 1)
D∗

(
D

D∗

)−α
. (C1)
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Following (Muniruzzaman, 1957; Clauset et al., 2009), we compute the log-likelihood of the observations for a given α (eq. 10),

L ≡ ln
N∏

i=1

S(D) = ln

[(
α− 1
D∗

)N N∏

i=1

(
Di

D∗

)−α]
(C2)

=N ln(α− 1) +N(α− 1) lnD∗−α
N∑

i

lnDi. (C3)

As the natural log is monotonically increasing in its argument, to find the most likely α, denoted α̂, we solve a similar equation,

5

1
α− 1

+ ln(D∗) =
1
N

N∑

i=1

Di

D∗
. (C4)

which resolves as a solution for the most likely α:

α̂= 1 +
N

N∑
i=1

ln Di
D∗

. (C5)

The above analysis concerns the most likely α that explains the FCD. If the FCD has a power-law tail, then so will the FSD,

and of the same exponent. However, we can also ask a separate question: what is the most-likely α= αP that explains the FSD,10

given the explicit relationship between S(D) and a power-law distributed P (r) examined in Appendix A: S(D) = CαP (r).

Repeating the above analysis,

L ≡ ln
N∏

i=1

S(D) = ln

[
C(αP )N

(
αP − 1
D∗

)N N∏

i=1

(
Di

D∗

)−αP ]
(C6)

=N lnC(αP ) +N ln(αP − 1) +N(αP − 1) lnD∗−αP
N∑

i

lnDi. (C7)

Next taking the derivative of L with respect to αP and setting to zero, we use the form of Cα identified in Appendix A for15

circular floes and the fact that B′(x,y) =B(x,y)(ψ(x)−ψ(x+ y)) where ψ is the digamma function, therefore,

∂ lnCαP
∂αP

=
1
2

(
ψ
(αP

2

)
−ψ

(
αP + 1

2

))
. (C8)

The maximum likelihood α̂P is the solution to the transcendental equation,

1
2

[
ψ
(αP

2

)
−ψ

(
αP + 1

2

)]
+

1
αP − 1

=
1
N

N∑

i=1

Di

D∗
. (C9)

Although the decay coefficients for a FCD and FSD are the same, the most likely value α̂ that explains that data, and the most20

likely value α̂P that would explain the FSD that generated it are different, with α̂P > α̂.

The derivation of α̂P is again a consequence of floe chords that can be generated from a floe of size r that lie below D∗. In

practice, there is no a priori way to know the coefficients Cα upon which this derivation rests. The most effective technique is

to compute α̂ according to C5 and perform hypothesis testing on that fit. If the power-law hypothesis is rejected for the FCD,

it must be rejected for the FSD as well.25
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Appendix D: Averaging and Segmenting FSD Statistics

Due to limitations in the number of floe chords recorded at any particular location over time, we do not include all geographic

locations when computing hemispheric means. Averaging is performed by including only geographic regions where there are

least 25 recorded floe chords. The area being averaged over is thus not fixed in time. For seasonal cycle plots, we only include

months which have enough measurements for all fully-sampled CryoSat-2 years (2011-2018). For annual averages, we include5

only those years where all CryoSat-2 months (excluding June-September) have enough measurements.

When masking additional regions to perform the model/observation comparisons in Fig. 6, we note that because the Roach

et al. (2018a) model does not include processes that fragment larger floes into smaller floes in the absence of ocean surface

waves, regions in the interior Arctic without wave activity have nearly all sea ice area belonging to the highest floe size

categories. Nearly all regions where wave fracture is an active process also have a representative radii below about 10 km10

(Roach et al., 2019). We define regions that do not experience wave fracture as those with an abnormally high simulated

representative radius, which we choose to be the 22nd floe size category (r = 18.6 km) or above. The mask and comparisons in

Fig. 6 are made by excluding all such areas.
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